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AILSTRACT 

A two-dimensional, two-fluid, nonlinear computer model that is applicable to low- 
beta plasma interchange modes is described. Two, oppositely charged, interpenetrating 
fluids are followed in their two-dimensional motions perpendicular to a strong magnetic 
field with guiding center drift velocities by a finite-difference integration of the equations 
of continuity. The model is very similar to models in incompressible hydrodynamics. 
Primary among these similarities are the procedures and problems of spatial finite- 
differencing; these aspects are discussed only briefly. The new features brought in by 
the plasma characteristics have caused problems in computational stability of the 
method of time finite-ditferencing; the analysis and solution of these problems are 
discussed extensively. In particular, the frequently used leapfrog scheme is found to be 
unconditionally unstable due to growing computational modes and other schemes, along 
with model changes to a “one-fluid” model in certain regimes, are found to be necessary 
for stability. Of more general interest to other nonlinear fluid models that deal with 
the integration of equations of the form au/at = F(u, t) is the derivation of composite 
schemes that retain some of the desirable qualities of several single schemes. 

I. INTRODUCTION 

Plasma instabilities at large amplitudes are obtained by computer calculation of 
the two-dimensional motion of an ion fluid and an electron fluid. The two charge 
fluids move with guiding center velocities in applied magnetic and gravitational 
fields, with self-electric field due to net charge or charge separation. The calculation 
is basically Eulerian, with densities, velocities and potentials, etc., known only at 
the two-dimensional grid points. There are similarities with incompressible 
(V - Y = 0) hydrodynamic flows. This approach is in contrast with nearly all 
-- 
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Base, Ohio, under Contract No. AF33(615)-1078/3524 and by the Joint Services Electronics 
Program (U. S. Army, U. S. Navy and U. S. Air Force) under Grant No. AF-AFOSR-139-66. 
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previous plasma computer experiments that have followed the motion of super 
particles such as sheets or disks or rods and are essentially Lagrangian. 

The two fluids are tenuous, coexist in the same space, and subject to similar 
forces. The relatively light electrons are not allowed to undergo the forces that 
are proportional to mass; hence, there is a difference in fluid velocities. The dif- 
ference causes charge separation, hence an electric field E. This field in turn acts 
with the magnetic field, B, to produce oscillatory or exponentially growing 
motion starting from small perturbations. The growth to large amplitude can lead 
to expansion of the plasma from its initial shape, to a new but locally confined 
state or to pumping of plasma to a wall, a nonconjined state. One objective of the 
program is to determine the final state of (known) instabilities when the plasma 
is excited initially at small amplitudes. 

The plasma is neutral or nearly so and is immersed in a magnetic field B and 
external force field g. The velocities of the two fluids are obtained from guiding- 
center theory [l]. Each fluid obeys an Eulerian equation of continuity; the equations 
are used to advance the densities at each time step. The net charge density, 
e(nr - n,), is used in Poisson’s equation to obtain the potential, c$. The new electric 
field changes the velocities, the fluid divergence, and hence, the densities. Then 
the cycle restarts. 

Plasma interchange is considered as meaning cooperative, charged particle 
motion, perpendicular to the magnetic field, B. The ratio of the plasma pressure 
to the magnetic field pressure is so low that changes in the value of B due to the 
plasma currents can be ignored. The strong magnetic field is also justification for 
the two-dimensionality. The effects of B field curvature are simulated by a 
gravitational field, g(lB). The guiding-center-drift description of a plasma is 
known to be valid for many low-frequency phenomena (e.g., see [2]). The effects 
of finite size of gyro orbits can be included in the drift description as correction 
factors [3]. The physical theory and initial results are reported elsewhere [4]. 

Here we present the computer-experiment design with emphasis on two distinct 
computational problems arising out of the time-finite-differencing procedures: 

(1) Specific procedures of time finite-differencing of equations of the form 
au/at = F(u, t). (This should be of interest to the general reader.) 

(2) A computational stability problem arising from the computational 
formulation of a particular plasma characteristic. 

II. MODEL, FIELDS, VARIABLES, GENERAL PROGRAM, 
AND GOVERNING EQUATIONS 

The model is shown in Fig. 1. There are two applied fields: magnetic field B, 
and general force (or gravitational) field g, g _L B. Both are uniform in space and 
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FIG. 1. Model description. Plasma is between conducting walls at y  = 0, 100 Ax in uniform 
g and B fields. Initially, the plasma is uniform except for a boundary layer that extends about 
10 grid cells. L is the Fourier period, the maximum wavelength observable. The boundary-layer 
development can be followed only in the lower half of the grid, y  ,< 50 Ax, due to computer 
storage limitations. 

constant in time. The region is bounded at y = 0, y = h by conducting walls at 
zero potential, C$ = 0; in x, the model is assumed to be periodic with period 
L = 48Ax. 

The independent variables are x, y, and L The dependent variables are: the 
electron and ion charge densities, n e , nr; the potential (due solely to net charge or 
charge separation, nr - n,); the corresponding electric field E = -V$; and the 
electron and ion fluid guiding-center velocities, ve and VI . The following are the 
governing equations: 

V2+ = -e(nr - n&do , (4 
E = -V+, P) 
v, = E x B/P, (0 
vi = E x B/B2 + mJe * g x B/B2 + m/eB2 . dE/dt, 03 

a?ZJat = -V ’ (L?iVi)p (E) 
a?l,/at = -v * (n,v,). (F) 

In differential form with continuous variables, these would be solved simul- 
taneously. In difference form the solutions will be obtained at the points x = i Ax, 
i = 1, 2,..., 48, y =jAy,j = I,2 ,..., 48, and at times t = 0, At, 2At, etc. 

The general program proceeds as follows: Initially, densities nr and ne are given. 
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From these, the potential 4, electric field E, and hence guiding-center velocities 
are found, all at one time level. The calculations involving the differencing of a/at 
require storage at more than one time level. The new values of the densities nr 
and ne at the new time level are obtained from difference solutions of the equations 
of continuity, Eqs. (E) and (F). 

We are describing a plasma where the cooperative motion of both charge species 
is a slow E x B/B2 drift of guiding centers across the externally imposed magnetic 
field. This guiding-center drift description of charged-particle motion demands 
only that all frequencies are small compared to the ion gyro frequency, 

and that all macroscopic lengths be much larger than the ion gyro radius, 

These requirements impose a restriction on the maximum allowable net charge 
density: 

Note that K = nrrnr/(~&?~) can still be much larger than unity if I ni - Ite 1 is 
sufficiently small. K is a critical parameter and is a measure of the effectiveness of 
the plasma to changes in the electric field. 

The assumption that the magnetic field B is constant in time requires that all 
plasma currents be sufficiently low. This essentially is the “low-beta” approxi- 
mation and is a restriction on the magnitude of “thermal” velocities or simply 
that the plasma thermal energy density be much less than the magnetic energy 
density. 

Readers familiar with existing, incompressible, hydrodynamic models will 
recognize the close relationship with this plasma model. In one limit where we 
follow only a single charge species with vE = E X B/B2, this plasma model is 
exactly analogous to those hydro-dynamic models where the charge density plays 
the role of the vorticity (the component perpendicular to the plane of motion), 
and the electrostatic potential plays the role of the stream function. The new 
feature in this plasma model is then the presence of two oppositely charged fluids 
where the net charge density is obtained from the difference between the densities 
of those fluids. The significance of this is that when the two charge fluids have 
approximately equal densities, even small relative velocities are important because 
they can cause separation and, hence, lead to changes in the electric field. This is 
the reason that the last two terms in the ion velocity are important (similar terms 
are ignored for the electrons because of the large mass ratio). The ml/eB2 * g x B 
term leads to charge separation and is the reason for the existence of flutes 
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(Rayleigh-Taylor modes) in the plasma. (Rosenbluth and Longmire, [5] 1957, 
for a guiding center drift derivation of the flute instability.) The last term, 
mi/eB2 * dE]dt. known as the polarization drift, also leads to charge separation 
and is the reason for the existence of the low-frequency plasma dielectric constant, 
~(1 + K), where 

K = nimi/(E,BZ). 

It is this polarization drift which leads to strong computational instability when 
using the “usual” procedure for time dtierencing (the leapfrog or midpoint scheme). 
Later sections deal with alternative time differencing methods that retain some of 
the desirable qualities of the leapfrog scheme, and with the analysis and resolution 
of the computational instability due to the polarization drift. 

III. SPATIAL GRID, STORAGE REQUIREMENTS, AND TIME LEVELS 

The grid used has 48 x 48 cells. The upper wall is placed at y = 1OOdx so it 
has only a small effect on the potential in the region of the boundary layer that is 
initially centered at y = 2Odx. Motion for y 3 48dx cannot be followed. 

As a minimum, nr , ne , and C$ are stored at past and present time levels. This 
requires 3 x 2 x 48 x 48 = 13, 824 locations. Since the program is long, this 
amount is close to the practical limit of the IBM 7094 without external storage. 

IV. SPATIAL FINITE-DIFFERENCING PROCEDURES 

The spatial differencing procedures used on this model are well-known, ordinary 
space-centered, fluid-conserving schemes. 

The method used for solving the five-point finite-difference form of Poisson’s 
equation is like that of Hackney [6] which is a fast, direct solution that proceeds, 
by Fourier analysis of the charge density along each row, solving for the potential 
Fourier amplitudes, and finally synthesizing the actual potentials at each grid 
point by summing the Fourier terms along each row. The method appears to be 
considerably faster than any known relaxation method. Knowledge of the Fourier 
mode amplitudes for the charge density and electrostatic potential can also be a 
useful diagnostic. 

During the integration of the equation of continuity, fluid conservation is 
obtained by using a space-centered difference analog of V * (nu) which, in the 
simplest 2-point form in one dimension, is 
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With the interpretation of Itj = s_*~~~~ n dx = Nj , the total fluid in the cell of 
dimension dx centered about the grid point j, it is clear that the flux in the total 
fluid for cells j + 2 and j - 2 will include contributions that exactly cancel the 
flux in total fluid for cell j, as given by Eq. (1). This scheme has the somewhat 
unpleasant aspect that adjacent cells are uncoupled. (Even-numbered cells 
cancel the fluid flux in other even-numbered cells, and odd-numbered cells 
cancel the fluid flux in other odd-numbered cells.) In one particular model, it is 
known that this property is the cause of a nonlinear computational instability 
at short wavelengths [7]. Lilly [8] shows that this particular instability can 
be avoided by using certain spatial-differencing schemes. Many other spatial- 
differencing schemes of the same order of accuracy are possible and, indeed, are 
used in many nonlinear fluid calculations. 

The property of exact fluid conservation may not be very important. The 
formulation of a difference scheme in a particular manner so as to conserve a 
given quantity exactly may, in fact, be detrimental in that the conservation property 
will be satisfied even if significant computational errors occur. The conservation 
property therefore loses its value as an independent check of the accuracy of the 
calculation. 

It is known that nonlinear fluid calculations frequently encounter serious 
computational stability problems (evidenced by large amounts of spurious energy 
appearing in short wavelengths) due to the spatially differenced terms. In many 
models, artificial damping is included to control short wavelengths. 

The nonlinear processes effectively generate spatial harmonics of the dependent 
variables so that the k spectrum grows wider. For k > k,, = n/Ax@ < 2Ax), 
the differencing interprets the k as a smaller value, ahsing, as k,,, = k - k,, 
(e.g., X = 4/3Ax --f X,,, = 4Ax). Lilly [8] shows, in a special case, that aliasing 
errors are comparable to those of the finite-difference Laplacian. Aliasing, however, 
can also produce a nonlinear computational instability due to consistent error 
buildup at small X over long times; one particular problem of this type is the 
Phillips [7] instability mentioned above. 

Our code at present has no methods guarding against severe consistent truncation 
error appearing in short wavelengths. Short-run calculations, as are appropriate 
for some simple single “events,” may not be plagued by such problems. That is, 
the complete calculation may be of sufficiently short duration that errors in short 
wavelenghts do not have enough time to build up to dangerous levels. Several 
successful short-run calculations [4] were made with the present model with little 
or no evidence of short-wavelength problems. Other calculations with the present 
model, applied to more complicated situations with a requirement for somewhat 
longer computer runs, presented computational stability problems of exactly this 
nature. Completely successful runs will require some form of control on short 
wavelengths. 
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The finite orbit corrections to the guiding-center drift equations can be expressed 
entirely with a simple addition to the ion equation of continuity. This additional 
term involves the spatial operators, V and V2. These spatially differenced terms 
complicate the short-wavelength problem mentioned above, but nothing funda- 
mentally new is added to the spatial-differencing problem. 

V. TIME DIFFERENCING PROCEDURES; USE OF COMPOSITE SCHEMES 

The main problem in this effort was numerical instability of finite difference 
equations which are analogs of the equation 

au/at = I+, t), (2) 

which is the general form of the continuity equations [Eqs. (E) and (F) above]. 
Truncation error, one problem, is measured by comparing Eq. (2) with a Taylor- 
series expansion of the finite-difference form of Eq. (2); the net error that results 
from the cumulative addition of a single time-step truncation error must remain 
small. Practically all nonlinear fluid calculations are restricted by computer 
storage limitations to time difference schemes that use information at two time 
levels to predict the new values. There are still a large number of schemes in this 
class however, and they differ widely in their accuracy and stability properties. 
The “best” choice of scheme usually depends on the particular type of solution 
expected. 

Here we examine the stability (cumulative truncation error) of several schemes 
used to solve the oscillator equation 

au/at = iwu. (3) 

Lilly [8] and Kurihara [9] present comparative lists of several schemes as applied 
to Eq. (3). In this section we construct and analyze composite schemes that retain 
some of the desirable properties of several schemes. The analytic solution of Eq. (3) 
is of course 

u(t) = uO exp(iwt). 

The finite difference solution of Eq. (3) should correspond as closely as possible 
to the constant amplitude oscillation of the analytic solution. We have obtained 
composite difference schemes that maintain a nearly constant amplitude and 
tolerable errors in phase. 

A second problem is to eliminate or damp the extraneous computational modes 
that always occur when the difference scheme is of higher order than the continuous 
differential equation. Under certain conditions, our equations are subject to a 
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particularly strong computational instability due to growing computational modes. 
This problem is discussed in Section VI. The damping of computational modes is 
a requirement on any composite scheme we derive. 

Before describing the derivation of composite schemes we first describe five 
single difference schemes, all well known, which yield fairly good approximate 
solutions of Eq. (3). All five schemes however are deficient in one of the two 
desirable qualities, constancy of the amplitude of the physical mode, or damping 
of computational modes. These five single schemes are then used in various com- 
binations for successive time steps in an attempt to obtain a net composite scheme 
which comes closer to satisfying both criteria. 

The leapfrog (Lf) scheme applied to the general equation, Eq. (2), is, with time 
levels indicated by superscripts, 

(24’ - u-y(2dt) = P, 

where the truncation error is +%/W. To obtain the solution of a finite-difference 
equation, we follow the conventional technique described by Richtmyer [lo] who 
represents the difference solution of u(nd t) as 

where the h’s are called the amplification factors. Thus, for Lf applied to Eq. (3), 
where we have 

~1 - u-1 = 2ibuO with b = wd t, 

the characteristic equation is 

h - l/h = 2ib, 

or 
X = ib f (1 - b2)lj2, 

and h, corresponds to the physical mode and X- corresponds to an extraneous 
computational mode. Note that I X* 1 = 1 if b2 < 1. The physical mode therefore 
shows no error in the amplitude of the wave. The computational mode in this case 
does not grow or damp. Unfortunately, Lf is subject to a strong computational 
instability when applied to our equations (see Section VI), and must be rejected. 

The Adams-Bashforth (AB) scheme as applied to Eq. (2) is 

(u’ - @)/At = 8 . P - 4 . F-l, 

where the truncation error is again ~a~u/&~. For AB applied to Eq. (3) we have 

ul - u” = jib@ - Bib&, 
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which results in the characteristic equation 

A2 - h(l + &b) + 42 = 0. 

When b < 1, this yields 

IA+/ = 1 +Ob4+ ..., 

i.e., a small amplification of the physical mode, and 

i.e., a large damping of the computational mode. The amplification of the physical 
mode may not be tolerable for long time observation. 

A third scheme, which is an iterative procedure, is Heun (H). Applied to 
Eq. (2), it is 

u” - u” = AtFo, (4) 

d--u0 = &At(FO+F*). (5) 

Here, U* and F* refer to tentative first guesses for the new values. Applying H to 
Eq. (3), we obtain a small amplification of the physical mode, 

/ h j = 1 + Ob”. 

There are no computational modes. 
The fourth and fifth schemes, Lfc and ABC, are similar, corrector iterative 

procedures where tentative u* is obtained by Lf or AB, then corrected by averaging 
F as in Eq. (5). Both Lfc and ABC damp computational modes, and both yield a 
small damping of the physical mode, 

IX, / = 1 - Ob4 + . . . . 

The damping may not be tolerable for long time observation. 
Composite schemes, which use various combinations of the five schemes given 

above for successive time steps, have been tested with respect to Eq. (3). The 
object was to obtain partial cancellation of truncation errors and damping of 
computational modes. The net effect is more subtle, however, than simply adding 
errors of opposite “sign,” For example, as applied to Eq. (3), Lf (no growth) + AB 
(slow growth) gives net slow damping. 

Kurihara [9] tested the Lfc scheme as applied to Eq. (3), and suggested that the 
Lfc damping might be minimized by using it only intermittently with Lf. Our 
results show that this is not necessarily so; indeed, the composite scheme Lf-Lfc 
gives small amplification. 
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When dealing with composite schemes it is more convenient to use a matrix 
formulation which for Lf applied to Eq. (3) is 

The characteristic equation for the eigenvalue h is then obtained in the usual 
way, i.e., Detj A - hl 1 = 0, where A is the amplification matrix. This formalism 
makes it immediately obvious why the net effect of a composite scheme is not 
simply the product of the eigenvalues of the individual parts. To each eigenvalue 
there corresponds an eigenvector, in two-level schemes such as Lf, composed of a 
fraction of u” and a fraction of u-l. Another two-level scheme, such as AB, will 
have a different eigenvector and thus the net eigenvalue or amplification factor of 
the composite scheme cannot be simply the product X,r . X,, . The amplification 
matrix for the composite scheme is simply the product of the individual matrices. 
Thus, for AB. Lf we have 

which gives 

u2 
241 ] = L-1 WI $1. 

The evaluation of the composite eigenvalue now proceeds as usual. Schemes 
of varying levels can also be used; e.g., to use Lf alternating with a three-level 
scheme we merely change the description of Lf to 

Using this technique we have analyzed 20 different composite schemes composed 
of various combinations of the five single schemes described previously. Most of 
these composite schemes exhibit amplitude errors of the same order of magnitude 
as the five single schemes. (The single-scheme Lf has no amplitude errors, but as 
noted previously, it must be rejected because of computational mode growth.) 
Four of these 20 composite schemes show a great reduction in amplitude errors 
and retain a strong damping of computational modes. Table I is a summary of 
the 1 amplitude I2 after about eight cycles for five single and 20 composite schemes. 
Figure 2 shows the amplitudes for the four best schemes given in the table as a 
function of b = w  dt. Phase errors are not shown; they were comparable for all 
schemes and were tolerably small. 

581/I/4-4 
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TABLE I 

A LLTT OF VARIOUS COMPOSITE SCHEMES COMPARED WITH RESPECT TO THE SOLUTION OF 
THE EQUATION au/at = iwuO 

Scheme Description of 
No. scheme 

Number of 
single 

schemes used 0.1 

1 R I2 at UT = 50 
for odr = 

0.2 0.3 

1 Lf 1 1.000 1.000 1.000 
2 AB 1 1.025 1.24 2.25 
3 H 1 1.012 1.12 1.45 
4 Lfc 1 0.975 0.83 0.57 
5 ABc 1 0.975 0.82 0.54 
6 Lf-AB 2 0.977 0.85 0.65 
I Lf-Lfc 2 1.026 1.24 2.11 
8 AB-ABc 2 1.012 1.09 1.30 
9 Lf-ABC 2 1.025 1.20 1.73 

10 AB-H 2 1.025 1.23 2.03 
11 Lf-Lf-AB 3 1.025 1.21 1.68 
12 Lf-Lf-Lf-AB 4 0.979 0.90 0.86 
13 Lf-Lf-Lf-Lf-AB 5 1.023 1.12 1.02 
14 Lf-Lf-Lf-Lf-Lf-AB 6 0.982 0.95 1.12 
15 Lf-AB-AEAB 4 1.006 1.05 1.20 
16 Lf-Lf-ABAEAB 5 1.025 1.22 1.97 
17 Lf-ABABAB-AB 5 1.010 1.09 1.36 
18 Lf-Lf-AB-AB-AB-AB 6 1.025 1.23 1.50 
19 Lf-Lf-AEAB 4 1.025 1.22 1.91 
20 Lf-AELf-AB-AB 5 0.990 0.93 0.82 
21 Lf-AB-AB-H-Lf 5 1.025 1.20 1.73 
22 Lf-H 2 1.0002 1.008 1.063 
23 Lf-AB-AB 3 0.9996 0.990 0.946 
24 Lf-AB-AELf-H 5 0.997 0.984 0.978 
25 AELf-AB-Lf-H 5 1.00004 1.002 1.021 

a Any individual scheme yields an amplification un/uo = Re’@, whereas the analytic solution 
amplification is u(ndt)/rP = 1.0 exp(inwdr) : I R Ie at wT = 50 (* 8 cycles) is given for several 
values of wdt. T = ndt. 

Table I should not by any means be considered an exhaustive list of composite 
schemes. Indeed even the choice of the single schemes is arbitrary, although we 
have found these to be the most useful. The technique described in this section 
can be used to analyze a composite scheme composed of any combination of 
single schemes. 

The method of comparison used in Table I may be unfamiliar to readers 
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FIG. 2. Square of amplitude vs wdt at oT = 50 for the four best schemes of Table I. 

accustomed to seeing the single step amplification factor written out as an expansion 
in b =W dt. Thus, the AB scheme yields ( X I2 = 1 + 0.54b4 + 9.. and the H scheme 
yields 1 h jz = 1 + ab4. (Lilly [8] reports that the AB scheme yields I A la = 
1 + )b4 + *a-, which is slightly in error.) These single-step expressions cannot be 
directly compared with the expansions for the multistep composite schemes; thus, 
a fixed comparison time (UT = 50) was chosen for Table I. A rough comparison 
of the above expressions with the expansions for one of the better composite 
schemes, however, does reveal the dramatic improvement obtainable; thus, 
Lf-H, scheme No. 22 of Table I, yields (for the two time-step amplification factor) 
1 A I2 = 1 + b6. 

There may appear to be undue emphasis on the simple equation, Eq. (3), as our 
numerical procedure does not actually involve integration of this equation. But 
since we expect many oscillating or wave-type solutions, the above analysis and 
our problem should agree, at least qualitatively. Several schemes from Table I 
(Nos. 1,2,4-6,13,23,24) have been tried in our program when the linear analysis 
predicts a simple oscillating solution. Numbers 1 and 13 were unstable due to 
growing computational modes, as will be discussed in the next section. The other 
schemes were stable to computational modes, and in all cases the predictions of 
Table I were confirmed. That is, with o dl = 0.3, there was good quantitative 
agreement between the predictions of Table I and the actual results obtained. 
(Most of these schemes were tested before their analysis was attempted; the 
relatively large damping and amplification led to the analysis.) 
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Various composite schemes with combination Lf-H worked well in linear 
regimes but in certain nonlinear calculations produced a growing 2 dt oscillation, 
i.e., a time splitting that is characteristic of computational instability. The time- 
splitting sensitivity of Lf is well known. Here, the time splitting appears to be a 
reaction of Lf against the greater error which occurs in H in nonlinear regimes 
when u is function of n. The present program uses scheme No. 23 almost always. 

VI. TIME-DIFFERENCING INSTABILITY DUE TO COMPUTATIONAL MODES 

A. General Discussion 

It is well known that Lf is computationally unstable when used with the equation 

au/at = --we. 

The characteristic equation for the Lf scheme is 

This yields 

A2 + 2bX - 1 = 0, where b =wAt. 

A* = -b f (1 + b2)li2. 

Note that j h- / < 1; therefore, the computational mode grows and quickly 
dominates the solution. Contrast this with AB scheme where the characteristic 
equation is 

or 

A2 - A(1 - $b) - +b = 0, 

A+ = $(l - $b) f +(l - b + $b2)li2, 

and note that 1 h- 1 << 1 for small b. This means that the AB scheme will cause a 
large damping of the computational mode. 

Our equations are subject to a dangerous instability due to growing com- 
putational modes when the Lf scheme or an Lf-dominated composite scheme 
such as No. 14 of Table I is used. A complete stability analysis of the entire 
problem using the technique described by Richtmyer [IO] is easily formulated 
but is not easily solved. The best that can be done in most complicated system is 
to isolate each part and to determine the subsystem stability conditions. The hope 
is, of course, that the sum of such separate stability conditions will also be sufficient 
for stability for the actual system. This is the procedure we followed. (It is worth 
pointing out, however, that Kasahara [l I] found an example where just this 
subsystem procedure was found to fail.) 
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B. Time D@erencing of Continuity Equation 

The term that produces instability in the plasma problem is the polarization 
drift in the ion velocity. Accordingly, we ignore other terms and examine the 
subsystem that is a reasonable approximation of the actual system. 

Writing the charge densities as 

pi = em , pe = -me, p = pi + pe = e(ni - ne), (6) 

we obtain from Eqs. (E), and (F), an equation for the net charge density, 

ap/t?Y = -eV * (nivi - TleVe). (7) 

For illustration, net flux will be taken as due to velocity difference which allows us 
to use 

ni R3 ne = n. 

271 - Ue comes from v,(-mg x B) and v,(-m dE/dt). Since the troublesome part 
is aE/at in dE/dt, we will use u, - m aE/at and ignore v, . (The common drift 
Q> v, .) Thus, approximately, 

aflat = -v - (nmi/B” . aE/at) + -a-. (8) 

Replacing p with --E~V’+~ and E = -04, and expanding the divergence, we obtain 
an equation in n and $J, 

a(v2+)/at = -nm/E,B2 . a(V2$)/at - m/E,,B2 . [+$)/at] . Vn + s.-. (9) 

In solving, we estimate the right-hand side (r.h.s.) from past and present times and 
the value obtained is used to predict new values; the details depend on the differ- 
encing scheme used, as will be shown. The two a(V24)/at terms are not combined; 
as in our two-fluid model this equation is not solved explicitly. 

For simplicity, let n be taken as a zero-order variable and let the variations 
of 4 be along only one coordinate, x = jAx. Let V+ be given by the two-point 
expression (&+r - #~~-~)/(2Ax) and V2~ by the three-point expression 

GA+1 - 26 + A-lW2. 
Let 4 be given by a Fourier expansion, 

+(x) = +(jAx) = T c$” exp(ikj Ax). 

Thus, Eq. (9) is, for a given k, 

ap/at = nm/6,BZ iVn sin kAx -1 + kn * ___ 
kAx [ 

kAxJ2 2 a+k 
II sin(kAx/2) at + “’ (11) 

= [--K + iKD] ap/at + .... (12) 
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The r.h.s. may use present and past times; the 1.h.s. may use past, present, and 
future times. 

Lf differencing gives (dropping the Fourier index k) 

93’ - 4-l = (-2K + 2iKD)(f$O - 4-l), 

which uses past and present times on the r.h.s. and past and future on the 1.h.s. 
Using 

S = -2K + 2iKD, 

we find that the characteristic equation is 

A2 - Sh - (1 - s) = 0. 

The physical mode solution is 

A, = 1, 

and the computational mode solution is 

A-= -1 +s 

with 
/h-12= 1+4K+4K2+4PP> 1. 

The inequality holds as K = nm&,B2 > 0. Hence this mode is unconditionally 
unstable. 

AB differencing gives 

$’ - 4” = @WO - 4-9 - s-’ - 4-31 

with the characteristic equation 

AS - P(1 + g?) + AS - )S = 0. 

The physical mode is 
A = 1, 

and there are two computational modes obtained from 

A2 - $LY + 2s = 0. 

For negligible D, marginal stability, 1 h 1 = 1, holds for one of these modes for 
K = 0.5; for the other ( h ( = 0.25, hence is damped. 

Composite schemes from Table I, not dominated by Lf, are stable for K 5 1. 
In general, schemes which are composed of a larger fraction of Lf are harder to 
stabilize, i.e., the larger the percentage of Lf, the lower the marginal stability value 
of K. Lf dominated schemes, like No. 14, are unstable unless K << 1. 
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There should be some mention about the possible magnitudes of the coefficient 

Vn sin kAx 
D=kn’-’ [ 

kAx/2 2 
kAx I sin(kAx/2) * 

The trigonometric function varies from 1.0 to 0.0 as k Ax increases from 0 to 7r or 
X = 2Ax, as short as can be “seen” on the spatial grid. The Vn/kn term is roughly 
I/k6 where S is the thickness of the boundary layer. The difficulty arises here at 
small k, long wavelength. If taken at face value, it means that even the AB scheme 
would be unstable due to some long-wavelength effect of the polarization drift 
on the electrostatic field. The source of the trouble is the difference analog of the 
Laplacian operator V2. Similar problems with this term have appeared in previous 
stability analyses (Charney et al. [12]), where it was remarked that long-wavelength 
phenomena are not expected to cause trouble. In practice, we have found no 
instability not predictable on the assumption that D 2 1. 

The computational mode behavior of those schemes of Table I that we have 
tried (Nos. 1, 2, 4-6, 13, 23, 24) agrees very well with the foregoing analysis. There 
is evidence that the long-range nature of the electrostatic field allows the stability 
condition to be violated in part of the region if it is satisfied sufficiently strong 
elsewhere. Thus in scheme No. 6, the stability analysis yields nm/c,,B2 = 4 as the 
condition of marginal stability, but the numerical solution with n,,,m/q,B2 = 0.5 
was perfectly stable (n varies from 0 up to it ,,). In many systems this behavior 
does not occur, i.e., stability conditions must be satisfied everywhere [lo]. 

Unless K < 1, there is an additional damping of the physical mode caused by 
the inaccuracy of our finite-difference form for &j/lat at t = 0; (4” - #l)/At has 
an error term GY2$/lat2. The damping of course is reduced as w  At is reduced but 
is quite large at w  At = 0.3 if K N 1. A more accurate finite difference expression 
is 

(#” - 2$-l + #@“)/At, 

but this requires storing another array of numbers corresponding to +-” and may 
not be feasible because the storage requirements are already quite high. The use 
of more time steps also introduces more computational modes which may result 
in more stringent stability conditions. For example, with the use of this more 
accurate expression for &@t, the Lf scheme is more strongly unstable, and the AB 
scheme allows a K only one half as large as previously for marginal stability. 

Thus, by restricting K to 51, various difference schemes that are stable to the 
polarization term can be devised. This is not an entirely satisfactory situation 
however, because it would be desirable to have K range over values from <<l to >l. 
In the next section, the changes in the model necessary for K 2 1 are described. 
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VII. ROUND-OFF ERRORS; ONE-FLUID MODEL 

In the last section we showed that the source of the computational mode difficulty 
in our two-fluid model is the ion polarization velocity, v, = mi/(B2e) * dE/dt, 
which represents the response of the plasma to changes in E. The higher the value 
of K = nrmi/(~,J~), the more effective the plasma is in responding to changes in E. 
As K is increased to large values, the resulting net charge separation becomes 
very small, I ni - He I G$ ni. Even if the two-fluid model were computationally 
stable, there would be increased round-off errors as K> 1, due to taking the 
difference of nearly equal values. 

To surmount both the round-off error and the computational instability inherent 
in the two-fluid model, we change the program from two-fluid to one-fluid. Instead 
of following the electron fluid and ion fluid separately, we follow a neutral fluid 
(n = ni M ne) and a charged fluid (n, = ni - He) with E/B drifts only; the 
remaining ion drifts, v, , v, , are used only to cause charge separation. (These 
approximations imply that uE> vg which usually is a good assumption when 
Kk 1.) 

The change in the computational stability criterion can be easily calculated. 
Eq. (8) (corrected for the terms omitted in the previous discussion) in the one-fluid 
model is now solved explicitly so we can combine V2+ terms changing Eq. (9) to 

a(vs&/at = -mlc,B2 . a(V$)/at . Vn + . . . 
(1 + n&,B2) 

Eq. (12) becomes 

(13) 

The stability condition for the AB scheme is now that D’ be of the order 54 
and is satisfied (if D itself is sufficiently small) whatever the value of K. This 
behavior is typical of most of the schemes of Table I. Lf is still unstable (although 
not as strongly), but the Lf-dominated schemes may not be. For example, No. 14 
is marginally stable when D’ = 0.25. All of the schemes of Table I were not tested 
with respect to the polarization term in the one-fluid model, since most of the 
schemes had already been rejected on the criterion of the damping or amplification 
of the physical mode. 

In the range K 5 1, the one-fluid model can provide a check against the round-off 
error in the two-fluid model. Some runs have been made with both the one-fluid 
model and the two-fluid model, where the behavior was expected to be one-fluid 
in nature (E/B drift dominating). No essential differences were found, so we feel 
confident that, in some cases at least, round-off error in the two-fluid model is not 
serious. 
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VIII. OUTPUT: ENERGY vs TIME, FOURIER-MODE AMPLITUDE vs TIME, 
MARKER-PARTICLE TRAJECTORIES 

As diagnostic computer output, the electric, kinetic, and gravitational energies 
are followed in time and the total energy, of course, is to be conserved. Energy plots 
are frequently a good early indicator of computational trouble. 

The time behavior of spatial Fourier modes (we have periodicity in x) is available 
for more detailed understanding and for developing nonlinear theory. The Fourier 
amplitudes for p = e(ni - ne) and #p”(v) and $Q)] are obtained each time step 
as part of the potential solution. Hence, no additional computation is required. 

The primary initial objective has been to obtain growth to large amplitude of 

b a) (plasma) 

\ .I ‘I,‘\. 
16 :’ ‘: :’ 1: 

a ‘wall 46 

FIG. 3. Rayleigh-Taylor instability growth. Marker-particle positions and velocity vectors 
are shown at two intermediate times: (a) t = 7.200; (b) t = 9.350; (c) shows the trajectories 
for the entire run, ending at I = 12.975 for those particles initially on line y =:24 Ax. The small 
triangles mark the positions at t = 11.775. t = 7.200 corresponds to approximately Se-folding 
times of the linear theory. y is the last part of a trajectory for a particle initially on the bottom 
row at (x, y) = (48 dx, 16 dx). Boundary initially extends from y w 15 dx (n = 0 for y < 15 Ax) 
to y = 25 dx (n = nmax for y > 25.4x). 
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FIG. 4. Kelvin-Hehnholtz instability growth. Marker-particle positions and velocity vectors 
are shown at four different times: (a) 15 Al; (b) 30 At; (c) 60 dr; (d) 120 At. The center of the 
boundary layer is at y  = 30 as marked. Conducting wall is at y  = 0. df w 0.5 AX/VTXIU. 

various boundary-layer instabilities. It was especially desirable to distinguish 
instabilities that saturated, with plasma spatially con$&zed, from those that pumped 
plasma to the wall or were nonconfined. Initial results showed that the Rayleigh- 
Taylor growth was nonconfined but that the Kelvin-Helmholtz growth was 
confined-both for low densities, K << 1 (see [4]). The development was followed 
with plots of marker particles, which are points with forward pointing “tails” 
giving velocity vectors. Snapshots and time exposures or trajectory plots were 
obtained. The marker particles are fictitious particles inserted (usually uniformly) 
in the plasma and followed with local E/B velocity. Examples are given in Figs. 3 
and 4. 
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IX. CONCLUSIONS 

The nonlinear plasma model described in this report has many characteristics 
of older models in incompressible hydrodynamics. The main new feature of this 
plasma model is that the motion of two interpenetrating fluids is calculated. These 
two fluids, which are oppositely charged, move with guiding center drifts perpen- 
dicular to a strong magnetic field B, and are driven by two different velocity fields, 
which, however, are nearly identical; the vE = E X B/B2 is velocity is common 
to both fluids. In the velocity of the ion fluid there are small additional terms that 
lead to net charge separation and, hence, to a change in the electric field E, which 
is the driving term. These additional terms in the ion velocity are also the source 
of severe computational instability of the method of time differencing. One 
frequently used method of time differencing, the leapfrog (Lf) scheme, is uncon- 
ditionally unstable due to growing computational modes. Other schemes, such as 
the Adams-Bashforth (AB) and Heun (H) schemes are stable provided certain 
restrictions are imposed on the allowable magnitude of an important physical 
parameter, K = n~m&,B2, which is a measure of the response of the pIasma to 
changes in the electric field. No stable time finite-difference scheme is possible in 
the two-fluid model for K >, 1. When K >, 1, physical conditions (related to the 
problem of round-off), as well as the stability conditions, dictate a change to a 
“one-fluid” model, where a neutral fluid and a charged fluid are followed with 
uE drifts only, and a net charge separation is calculated from the small additional 
ion drifts. Analysis and actual tests of the model show that stability for K 2 1 is 
indeed possible in the one-fluid model. Rejection of the leapfrog scheme for the 
time integration also led us to search for composite schemes (where alternate time 
steps use different single schemes) which retain some of the desirable qualities of 
several individual schemes. Several composite schemes, which use the single 
schemes Lf, AB, and H in various combinations, have been devised which, while 
retaining much of the computational mode stability of AB and H, are also very 
close to the desirable property of the Lf scheme, the nonamplification of the 
amplitude of oscillating solutions. These last results should be applicable to other 
nonlinear fluid models for which wave-type solutions are expected from the 
integration of equations of the type aujat = F(u, t). 
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